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Section I

INTRODUCTION AND SUMMARY

MODULE STRUCTURE

The landing gear module is written in FORTRAN IV extended for the
CDC 16600 computer. It is contained in overlay (6,0), which is considerably

smaller than the

The landing

50,000-octal core limit of SWEEP.

gear module consists of a main program, LANDGR, and five

subroutines - LGEAR, LGWT, LOADS, LG3P, and BMOR:

e LANDGR - Reads input data
e LGEAR - Determines drag, side, and vertical loads on wheels
e LOADS - Determines axial and normal loads on strut
e LGWT - Computes weight of landing gear
e BMOR - Determines bending modulus of rupture and torsion modulus
of rupture
e LG3P - Three-point interpolation routine
DESIGN PARAMETERS
The design parameters which are included in the landing gear analysis

are.:

e Takeoff and landing weights of aircraft

e Wing area

o Center of gravity of aircraft at takeoff and landing weights

e Distance

from center of gravity to ground

e Landing speed at takeoff and landing weights

Sink speed at takeoff and landing weights
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e Load factor at takeoff and landing weights
e Coefficient of 1ift at takeoff and landing weights

e Material properties (density, modulus of elasticity, ultimate tensile
strength, yield compression strength, Poisson's ratio)

o Fuselage station of main and nose gears

o Distance between main gear struts

e Length of main and nose gear struts

e Stroke of main and nose gears

e Piston diameter of main and nose gears

e Eccentricity of main and nose gear wheels

e Mumber of wheels per strut for main and nose gears
e Strut angles (fore-aft and lateral) of main gear
e Strut angle (fore-aft) of nose gear

e Dimensions of main and nose gear tires

ING LOADS

The landing gear loads analysis in subroutine LGEAR follows the
procedure outlined in MIL-A-008862A (USAF). (1)

The axial and normal loads on the strut are determined for eight load
conditions. These eight conditions are shown in Figure 36.

The loads for the two-point landing, spin-up, spring-back, and
unsymmetrical braking load conditions are determined at both the takeoff and
landing weights for both the main and nose gears.

The loads for the braked roll and drift landing conditions are determined
at both the takeoff and landing weights for the main gear only.

1. Military Specification MIL-A-008862A (USAF), "Airplane Strength and
Rigidity, Landing and Ground Loads,' 31 March 1971.
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Main Gear Nose Gear
T.0. Ldg T.0. Ldg
wt wt wt wt
Two-point landing X X X X
Spinup X X X X
Springback X X
Braked roll X X
Drift Landing X X
Unsymmetrical Braking X X X X
Towing X
Turning X

Figure 36. Load conditions analyzed in subroutine LGEAR.

The loads for the towing and turning conditions are determined at the
takeoff weight only for both the main and nose gears.

The program user may bypass the loads analysis and specify the design
loads in the variable input data.

LANDING GEAR WEIGHTS

The weight of the landing gear is determined by analytical methods for
as much of the gear as is practicable. A statistical method is then used to
compute the 'miscellaneous weight" which will produce a total weight
consistent with the known weights of many past landing gears.

MY P TR L
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The parts of the landing gear which are treated analytically are
listed in the following paragraphs, along with a brief summary of the method
used.

OUTER CYLINDER

The geometry of the outer cylinder is shown in Figure 37. The weight is
determined by calculating the areas at sections 1, 2, and 3, which are at the
top, midpoint, and bottom of the outer cylinder. The area at each section is
calculated by searching for the value of the ratio of outside diameter to wall
thickness for which the geometric area equals the area required for strength.

Section | r - T—Trunnion

Outer cylinder —em
Section 2 f
L
0.6L
Section 3 I
Section & 0.2L
Inner cylinder ————p- 0.12L
Axle i

Q—Plston—ol

Diameter

Figure 37. Inner cylinder and outer cylinder geometry,
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INNER CYLINDER (PISTON)

The geometry of the inner cylinder is also shown in Figure 37. The
inner cylinder has a constant outside diameter, the piston diameter, which is
either given in the input data or calculated as a function of the static load.
The inner cylinder extends from the axle to section 2, the midpoint of the
outer cylinder. The area of the inner cylinder at section 4 is calculated
in the same manner as the areas of the outer cylinder. The weight of the
inner cylinder is then calculated by using the area at section 4 as the con-
stant area from the axle to section 3, and using an area based on an assumed
diameter to wall thickness ratio as the area between sections 3 and 2.

AXLE

The geometry of the axle is shown in Figure 38. The length of the axle
is the width of the tire plus one-half the inner cylinder (piston) diameter.

— ——Piston diameter
r-'l — Tire
| : width
' |
= rT-P

|
I
| ]
| |
| |
L—_Jd
—b] — Tire
width
j——Axle —
length

Figure 38, Axle geometry.
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The bending and torsion moments on the axle are determined by assuming
that the gross weight of the aircraft is divided evenly among the total
number of main gear wheels, or that the static load on the nose gear is
divided evenly among the nose gear wheels, but that one tire is flat when
there are two wheels on a strut, and that two tires on one strut are flat
when there are four wheels on a strut.

The diameter of the axle at the side of the piston is determined, and
the weight is calculated by using this area as the constant diameter of the
axle.

The axle is a solid cylinder, but the bending modulus of rupture and
the torsion modulus of rupture used in the calculation of the diameter are
based on a diameter-to-wall-thickness ratio equal to 10.

BOGIE
The geometry of the bogie is shown in Figure 39. The length of the bogie

is equal to the piston diameter plus 1.1 times the outside diameter of the
tires.

F
Tire Dia _—
D.05
(Tire dia)
Piston Bogie length
diameter
g

L

e T

length
Figure 39. Bogie geometry.

487



The weight of the bogie is calculated only when there are four tires per
strut on the main gear. The bending and torsion momenis on the bogie are
determined by assuming that both tires on one axle are flat. The area at the
midpoint of the bogie length is calculated from the moments and an assumed
value of the ratio of outside diameter to cylinder wall thickness. The weight
of the bogie is calculated by using the area at the midpoint as the constant
area of the bogie.

DRAG AND SIDE STRUTS
The geometry of the drag strut or the side strut is shown in Figure 40.

The drag and side struts are assumed to be solid; therefore, the area is the
load divided by the compression yield strength.

1 F
2/3L
L
o, HI—
3(NL)
NL

Figure 40. Drag strut or side strut geometry.
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The normal load, NL, which determines the weight of the side strut is the
larger of the normal loads from the drift landing and turning conditions. The
normal load which determines the weight of the drag strut is the largest load
from the six load conditions which act in the fore-aft direction - two-point
landing, spinup, springback, braked roll, unsymmetrical braking, and towing.

OIL

The weight of the oil is a function of the stroke, the piston diameter,
and an assumed 0il density.

TIRES, TUBES, AND WHEELS

The weight of the tires, tubes and wheels is calculated from the
diameter and width of the tires.

BRAKES

The weight of the brakes is a function of the weight of the aircraft, the
landing speed, and an assumed ratio of pounds of brakes to foot-pounds of
kinetic energy.

WEIGHT COEFFICIENTS

Coefficients may be applied to the calculated weights of the inner
cylinder, outer cylinder, bogie drag strut, and side strut. Coefficients
may also be applied to the total weight, including the calculated miscel-

laneous weight, of either the main gear or nose gear.

These coefficients can be used to account for configurations which are
not similar to the simplified landing gear design assumed in this program.

A fixed weight may also be input to account for any weight item not
included in this program.

MODULE OPERATION

MASS STORAGE

The input data to the landing gear module are contained in one data array
with 116 locations. This array is stored in mass storage file record 25.
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Mass storage file record 25 is read in LANDGR. No mass storage file
records are written in the landing gear program.

PERMANENT DATA

The first 45 locations in the input data array are permanent data, and
are read from the permanent data file, TAPE7, in the first case of each job.
Table 31 lists the variables in these permanent data and the values which are
stored in the permanent data file.

These permanent data values may be changed by reading new data into these
locations when the variable input data for each case are read. The new value
will remain in the input data for each following case in the job, but does not
change the value stored in the permanent data file.

Some of the permanent data values which the program user may want to
change, in order to better approximate a specific landing gear design, are
as follows (refer to Table 31 for a complete list of permanent da*a:

1. The ultimate-to-limit-load-factor ratio (1.5 now assumed in the
permanent data file)

2. The number of main gear struts (two now assumed)
3. The fraction of energy absorbed by the strut (0.1 now assumed)

4. The pounds of brake weight per foot-pound of kinetic energy
(0.408 x 10~ 1b/ft-1b now assumed)

5. The density of oil (0.03 1b/in.3 now assumed)

6. The values of diameter to cylinder wall thickness for the axle,
bogie, and upper portion of the inner cylinder (10, 20, and 50,
respectively, now assumed)

7. The ratio of the nose gear piston diameter to the main gear piston
diameter, used, when the nose gear piston diameter is not given in
the input data (0.6 now assumed).

8. The stroke coefficients, used to determine the "effective stroke'

of the main and nose gears ot takeoff and landing weights (1.0 now
assumed)
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9. The fraction of the strut length from the axle to each of the four
sections at which the area is calculated (1.0, 0.6, 0.2, and 0.12
now assumed) :

10. The miscellaneous weight factors for the main and nose gears

VARIABLE INPUT DATA

The variable input data are contained in locations 46 through 116 of the
landing gear input data. These variable input data are described in Table 32.
The variable input data in locations 46 through 116, along with the changes,
if any, to the permanent data in locations 1 through 45, are placed in the
SWEEP input data deck behind an identification card containing "LG" in
colums 1 and 2.

The landing gear module, overlay (6,0), may be run as a stand-alone
program. In this case, only the data read module the landing gear module,
and, if wanted, the final output module will be called.

All of the data required for the landing gear module must be included
in the landing gear data deck when the module is run in a stand-alone mode.
However, when the data management module is also executed (or has been executed
in a previous case in this job), the data in 17 locations of the landing gear
variable data may be omitted. These locations are listed in Table 29.

The data in the 17 locations listed in Table 29 are also included in the
general input data, which must be input before the data management module can
be executed. Location 46, which contains the takeoff weight, is used to
indicate that these data values are to be transferred to the landing gear
data. The value in location 46 is stored in location 24 of array XMISC,
which is in labeled common block/MISC/. When this value is 0, subroutine
DLNDGR in the data management module will read mass storage record 25. The
data listed in Table 29 will be placed in the landing gear data array, and
the revised record 25 will be written in the mass storage file.

Note that values will be placed in all of the 17 locations listed in

Table 29 when the value in location 46 is 0, so that any value input in one of
the other 16 locations in the landing gear input data would be replaced.
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TABLE 29, LANDING GEAR DESIGN DATA FROM DATA MANAGEMENT MODULE gf
|

Loc Description ‘:
46 Takeoff weight, 1b ‘
47 Landing weight, 1b |
48 Aborted takeoff 4weight, 1b
49 Fuselage station of CG of aircraft at takedff, in.
50 Fuselage station of CG of aircraft at landing, in,
51 Distance from aircraft CG to ground, i-,
52 Fuselage gtatim of main gear, in, ;'
53 Fuselage station of nose gear (or tail wheelj, in.
54 Distance between main gear struts, in.
72 Axle to trunnion length of main gear strut with

piston extended, in.
73 Stroke of main gear, in.

81 Axle to trunnion length of nose gear with piston
extended, in.

82 Stroke of nose gear, in,
89 Sink speed at takeoff weight, ft/sec
90 Sink speed at landing weight, ft/sec :
91 Landing speed at takeoff weight, ft/sec 8
92 Landing speed at landing weight, ft/sec
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Variable Input Data Options

The program user has several options when filling out the landing

gear variable data, These options are summarized here, and are described in
greater detail in Section II and in the notes following Table 32,

1.

2.

5.

The calculation of the landing gear loads may be bypassed. In this
case, the program user must specify the design loads in the input
data.

The auxiliary gear may be a tail wheel instead of a nose gear. The
tail wheel weight is determined by a single statistical equation.

The piston diameter may be input, or the program may.compute the
piston diameter from the static load on the strut.

The landing speeds may be input, or the program may compute the
landing speeds from the coefficients of 1ift, the wing area, and the
takeoff and landing weights.

The load factors may be input, or the program may compute the load
factors from the strokes, the sink speeds, the wing 1lift coefficient,
and the tire diameter.

The wheel, tire, and tube weights may be input, or they may be
computed by the program from the tire dimensions.

The brake weight may be input, or the program may compute the brake
weight from the takeoff weight and the landing speed.

The inertia of the main gear wheels, tires, tubes, and brakes may be
input, or it may be computed by the progr:u: from the wheel, tire,
tube, and brake weights and the tire dimensions.

The effect of the deflections (fore-aft, lateral, and angular) of
the strut may be included or may be omitted in the calculations of
the weight of the inner and outer cylinders. If there are no
deflections (and the eccentricity of the wheels is 0), the axial
load on the strut has no moment arm, and all the bending moment on
the strut comes from the normal load.

The program first computes the weight of the inner and outer
cylinders with no deflections on the strut. If the deflections are
not to be included, this completes the analysis. If the effect of
the deflection is to be included, the deflections are determined and
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the weights are recalculated with the increased moment resulting
from the deflection. This loop continues for a maximum of six
passes, or until the difference between the areas calculated at
section 2, Figure 37, for two successive passes is less than a given
tolerance.

OUTPUT

Program LANDGR and subroutine LGEAR will produce printed output if the
appropriate print indicator is .urned on. Program LANDGR will print (on one
page) the variable input data in locations 46 through 116. Subroutine LGEAR
will print (on one page) the landing gear loads.

The weight summary, design data, deflections, and CG data for the main
gear (one page) and the nose gear (one page) are always printod in subroutine

Comments, Warning Messages, and Error Messages

There are no warning messages or error messages printed in the landing
gear program.

The only comment printed is a reminder to the program user that if the

design load conditions indicators are all 0, this means that the loads were
not computed but were supplied by the user in the input data.
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Section II

METHODS AND FORMULATIONS

GENERAL DISCUSSION

An analytical approach to strut weight estimation which is applicable to
both main and nose gears is used. This approach idealizes the strut as a
cantilevered member designed to the spectrum of ground loads. Wheels, brakes,
tires, and tube weights are either user input or calculated by the program.
Statistical equations are used to calculate these components.

Specific design data development and weight calculation functions are
divided into separate routines which are called by the landing gear weight
estimation module control program LANDGR. Methods employed are described
herein in the order that they are used in the program. Table 30 is a list of
symbols that are used in the formulations that follow. Subscript I in this
table is used to represent the four strut sections, Figure 37.

TABLE 30, LIST OF SYMBOLS IN METHODS AND FORMULATIONS

Symbol Description Units

AA Scratch variable
A Distance from CG to main gear, either Apg or Ap | in.
ACM Scratch variable
AL Distance from CG at landing to main gear in.
Ao Distance from CG at takeoff to main gear in.
AG Geometric area for assumed value of DOT in.2
AL Axial load on strut at this load condition 1b
ALOAD Axial load on strut 1b
ALgp Axial load on either main or nose gear strut at

either takeoff or landing weight for spring-

back condition 1b
ANG Angle between resultant load and strut radians
AREAY Maximum of areas computed at section I for

each load condition in.?2
AREAC Final area of cylinder section for load

condition in.2
AS Area required for strength for assumed value

of DOT in.2
AXLGTH Length of axle in,
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TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Description Units
AXLOAD Total load on axles for either main or nose gear| 1b
Al Fore-aft angle of strut radians
A2 Lateral angle of strut radians
BB Scratch variable
B Distance from CG to nose gear, either By or By | in.
B, Distance from CG at landing to nose gear in.
Bro Distance from CG at takeoff to nose gear in.
BOM Scratch variable
BD Diameter of bogie in.
BMAX Bending moment on each axle in.-1b
BMB Bending moment at midpoint of bogie in.-1b
BMR; Resultant of fore-aft and lateral bending

moments at section I in.-1b
BMRU Bending modules of rupture 1b/in,2
BMY1 Fore-aft bending moment at section I in.-1b
BMYDZ Fore-aft bending moment from condition which

produced max area at section 2 in.-1b
BMZy Lateral bending moment at section I in.-1b
BMZDZ Lateral bending moment from condition which

produced max area at section 2 in.-1b
BOGL Length of bogie in.
BRAKES Weight of brakes per aircraft 1b
BRC Braked roll constant
BWT Weight of bogie 1b
CGro CG of aircraft at takeoff in,
CGG Distance from CG to ground in.
CL, Coefficient of lift at landing weight
CL1o Coefficient of 1lift at takeoff weight
CLy Wing 1lift coefficient
CRFA Cosine of angle between resultant load and

fore-aft direction
CRL Cosine of angle between resultant load and

lateral direction
CRV Cosine of angle between resultant load and

vertical
CSFA Cosine of angle between strut and fore-aft

direction
CsL Cosine of angle between strut and lateral

direction -
Csv Cosine of angle between strut and vertical
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TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Description Units
DF Drag (fore-aft) load on wheels 1b
DIA; Outside diameter of cylinder at section I for

assumed value of DOT in.
DIAAX Diameter of axle at side of piston in,
DIADZ Diameter of outer cylinder at section 2 in.
DIAM Final outside diameter of cylinder for this

load condition in.
DIST Distance from main gear to nose gear in,
DLLNG{ Length from ground to section I in.
DMGS Distance between main gear struts in.
DOIL Density of oil 1b/in.3
DOT Diameter to wall thickness ratio
DOTB Assumed value of DOT for bogie
DOT32 Assumed value of DOT of inner cylinder between

sections 2 and 3
DOVRT?2 Diameter to wall thickness ratio at section 2
DOVT Final interpolated value of DOT for which R = 1
DP Piston diameter, either DP\y or DPy in.
DPy Diameter of main gear piston in.
DPy Diameter of nose gear piston in,
DSWT Weight of main or nose gear side strut 1b.
DWT Aborted takeoff delta weight 1b.
E Modulus of elasticity 1b/in.?2
ECC Eccentricity of wheels in.
FCY Compression yield stress 1b/in.2
FEA Fraction of energy absorbed by strut
FSy Fuselage station of main gear in.
FSy Fuselage station of nose gear in.
FTOW Tow load 1b
FVSU Vertical spinup load at time TSU on either

main or nose gear at either takeoff or

landing weight 1b
g Gravitational constant ft/sec?
G Modulus of rigidity 1b/in.2
GRWT Gross weight, either GRWITy or GRWT 1b
GRWT, Landing gross weight 1b
GRWTTg Takeoff gross weight 1b
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TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Description Units
I Section index
I2 Moment of inertia at section 2 in.4
Iv Inertia of wheels, tires, tubes, and brakes,

either IWy or IWy slug-ft?
Iy Inertia, per strut, of main gear wheels, tires,

tubes, and brakes slug-ft2
IWy Inertia of nose gear wheels, tires, and tubes slug-ft2
LNGTM; Length from axle to section I in.
NG Load factor, either NG|, or NGg,
NGy, Load factor at landing weight
NGpo Load factor at takeoff weight
NL Normal load on the strut at this load condition | 1b
NLgp Normal load on either main or nose gear strut

at either takeoff or landing weight for

springback condition 1b
NLgy Normal load on either main or nose gear strut

at either takeoff or landing weight for

spinup condition 1b
0D Outside diameter of tires, either ODy or ODy in.
0Dy Outside diameter of main gear tires in.
0Dy Outside diameter of nose gear tires in,
PHIax Angular deflection at bottom of strut radians
PHI; Angular deflection at section I radians
PI Ratio of circumference of circle to diameter

of circle
PLOAD Normal load on strut 1b
R Ratio of area required for strength to geo-

metric area
RADPD Scratch variable
RB2 Ratio of deflections at bottom of strut to

deflections at section 2
RHO Density of material 1b/in.3
RI2 Ratio of deflection at section T to deflection

at section 2
RLOAD Resultant load of drag, side, and vertical

loads on wheels 1b
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TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Description Units
Sw Wing area ft2
SF Side (lateral) load on wheels 1b
SS Sink speed ft/sec
SSL Sink speed at landing weight ft/sec
SSto Sink speed at takeoff weight ft/sec
SSWT Weight of main or nose gear side strut 1b
STREFF Effective stroke of main or nose gear at

takeoff or landing weight ft
STROKE Stroke of either main or nose gear in,
STROKE] Effective stroke of main gear at landing

weight ft
STROKET, Effective stroke of main gear at takeoff

weight ft
STRUTy Number of main gear struts
STRUTS Number of struts, main, or nose gear (always

1 for nose gear)
Sw Static load on each main gear strut 1b
T Ultimate tensile strength divided by 1,000 1b/in.2 X 10-3
TAILWT Weight of tail wheel 1b
™AX Torsion moment on each axle in.-1b
™B Torsion moment at midpoint of bogie in.-1b
TMOR Torsion modulus of rupture 1b/in.2
TOTAL Total weight of either main or nose gear 1b
TOTCAL Total calculated structure weight of either

main or nose gear 1b
TOTLNG Length of strut, axle to trunion in.
TOTSTW Total calculated weight of either main or

nose gear 1b
TPMI; Torsional bending moment at section I in.-1b
TPHIDZ Torsion moment from condition which produced

max area at section 2 in.-1b
TSU Time for wheel circumferential velocity to

reach ground velocity sec
TTy Weight per aircraft of main gear tubes and

tires 1b
TTn Weight per aircraft of nose gear tubes and

tires 1b
v Time to develop vertical reaction sec
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TABLE 30. LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONT)

Symbol Description Units
VF Vertical load on wheels 1b
VL Landing speed, either VLyg or VL ft/sec
Vi, Landing speed at landing weight ft/sec
VL10 Landing speed at takeoff weight ft/sec
WX Maximum vertical load, either VMXMGy,

VWOMGL,, WIXNGrg, or VMXNGL, 1b
WIXMGT, Maximum vertical load on main gear at landing

weight 1b
WXMGT( Maximum vertical load on main gear at takeoff

weight 1b
WIXNG, Maximum vertical load on nose gear at landing

weight 1b
WXNGT( Maximum vertical load on nose gear at takeoff

weight 1b
W Width of tires, either Wy or Wy in.
Wy Width of main gear tires in.
WN Width of nose gear tires in.
WCB Weight coefficient for bogie
WCDS Weight coefficient for drag strut
WCIC Weight coefficient for inner cylinder
WOMG Weight coefficient for main gear
WCNG Weight coefficient for nose gear
WCOC Weight coefficient for outer cylinder
WCSS Weight coefficient for side strut
WHEELy Weight per aircraft of main gear wheels 1b
WHEELN Weight per aircraft of nose gear wheels 1b
WMI Input miscellaneous weight 1b
WS Number of wheels per strut, either WSy or WSy
WSy Wheels per strut on main gear
WSy Wheels per strut on nose gear
WTAXL Total weight of axles for either main or nose

gear 1b
WIMISC Miscellaneous weight of either main or nose

gear 1b
WTIC Weight of inner cylinder 1b
WTOC Weight of outer cylinder 1b
WTOIL Weight of oil for either main or nose gear 1b
WITy Weight per wheel of main gear wheel, tire,

and tube 1b

500




B——e L AR WY AT S

TABLE 30, LIST OF SYMBOLS IN METHODS AND FORMULATIONS (CONCL)

Symbol Description Units
WITy Weight per wheel of nose gear wheel, tire,
and tube 1b
WTTB Weight wheels, tires, tubes, and brake for
either main or nose gear 1b
Yax Fore-aft deflection at bottom of strut in.
Y1 Fore-aft deflection at section I in.
ZAX Lateral deflection at bottom of strut in,
Z1 Lateral deflection at section I in.

OPTIONAL INPUT VARIABLES

The landing speeds; the load factor; the piston diameters; the wheel,
tire, and tube weights; the brake weight; and the inertia of the main gear
wheels, tires, tubes, and brakes must be determined if these variables were
not given in the input data.

LANDING SPEED

The landing speeds are caiculated from the aircraft weights, the wing
area, and the coefficients of lift.

0.5
GRWI‘,I.0 - DWT

= 34,7776 1)
VLo Sy Clrg

0.5

GRWT
VL, = 34.7776 |——%- 2)

L SW CLL

PR -

i st 1 b



landing speed at takeoff weight, ft/sec

)

landing speed at landing weight, ft/sec

-

= takeoff gross weight, 1b
= landing gross weight, 1b
Sw = wing area, £t2
CLTO = coefficient of lift at takeoff weight

= coefficient of 1ift at landing weight

3

aborted takeoff delta weight, 1b

LOAD FACTORS

The load factors are calculated from the strokes, the sink speeds, the
wing 1ift coefficient, and the tire diameter.

2
SS 0
(1-FEA) ( 10, f1-cL,) (0.98 STROKE , + 0.08 ji))
NGpy = 2 0.8 STRO ° = Ay @
: KEro
2
ss 0
(1-FEA) (—L-+ p-cL) (0.98 STROKE, + 0.08 )
& \2g L 12
NGy, 0.8 STROKE, o, @

NGTO = load factor at takeoff weight

NGL = load factor at landing weight

FEA = fraction of energy absorbed by strut
Ss,m = sink speed at takeoff weight, ft/sec
SSL = sink speed at landing weight, ft/sec
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CLw = wing 1lift coefficient
STROl(I-‘.l.0 = effective stroke of main gear at takeoff weight, ft

S'I‘ROKI:‘L = effective stroke of main gear at landing weight, ft

ODM = outside diameter of main gear tires, in.

g = gravitational constant (32.172), ft/sec2

PISTON DIAMETERS

The main gear piston diameter is a function of the static load.

Cayg - FSy
GRWT

0| FS, - F
- Mo BN 5

STRUI'M

SW = static load on each main gear strut, 1b
CGTO = CG of aircraft at take-off, in.

FSN = fuselage station of nose gear, in.

FSM = fuselage station of main gear, in.

S'I'RUI‘t‘

' number of main gear struts

If SW is greater than 77,295, the piston diameter is calculated by
equation 6.

0.5
_ L4 SW
DPy, = (15,000 PI ) (6)
DPM = diameter of main gear piston, in.
PI = ratio of circumference of circle to diameter of circle
(3.1416)
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If SW is less than 77,295, the scratch variables AOM, BOM, AA, BB, and

RADPD are detemmined, and the piston diameter is then calculated by equation 7.

AM = 187.5
BQOM = 380.0

AM = 126.7
BOM = 545.0

f SW < §,542
i 5,542 < SW < 33,819

AM = 95.6

BOM = 720.0; 33,819 < SW < 77,295

2
BQM
A = - 0,333 (A(M)

3
2
BB = BQM 4 SW

*727 \a] " PI AM

The nose gear piston diameter is a function of the main gear piston
diameter.

DPN = 0.6 DPM

DPN = diameter of nose gear piston, in.
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WHEEL, TIRE, AND TUBE WEIGHTS

The wheel, tire, and tube weights are calculated from the width and
diameter of the wheels.

7
MIT, = 0.425 om, W, + 0.00025 [N )
M= 0425 0y Wy + 0. 100

on. W \3
i o0y ¥y )
WIT,, = 0.4 0D, W, + 0.0000024 ( = (10)

WI‘I‘M = weight per wheel of main gear wheel, tire, and tube, 1b

W’I'I‘N = weight per wheel of nose gear wheel, tire, and tube, 1b

ODN = outside diameter of nose gear tires, in.

WM = width of main gear tires, in.

WN = width of nose gear tires, in.

45 percent of the wheel, tire, and tube weight is in the wheels; there-
fore, the total wheel, tire, and tube weights can be computed by equations 11
through 14,

WHEEL,, = 0.45 WS, WIT, 2 (11)
TT, = 1.222 WHEEL, (12)
WHEEL, = 0.45 WS, WIT, (13)
TTy, = 1.222 WHEEL, (14)
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WHEELM = weight per aircraft of main gear wheels, 1b
MEELN = weight per aircraft of nose gear wheels, 1b

TTy

’I'I‘N = weight per aircraft of nose gear tubes and tires, 1b

WSM = wheels per strut on main gear

= weight per aircraft of main gear tubes and tire, 1b

WSN = wheels per strut on nose gear

BRAKE WEIGHT

The brake weight is calculated from the takeoff weight and the landing
speed. All the brake weight is in the main landing gear.

2

BRAKES = 0.010783 GRWT,.., VL

10 Lo 0.00000408 (15)

BRAKES = weight of brakes per aircraft, 1b

ROTATING INERTIA OF WHEEL ASSEMBLY

Polar moment of inertia for nain gear wheels, tires, tubes, and brakes
is calculated from the wheel, tire, tube, and brake weights and the tire
dimensions.

o) e ) o s v

Wy STRUT, g (16)

IWM = inertia, per strut, of main gear wheels, tires, tubes, and
brakes, slug-ft2
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IAL AND N
The axial and nommal loads on the strut at each load condition are

determined by first finding the ground reactions on the wheels. The result-
tant of these loads is then computed by equation 17,

0.5 .

2+ sF) an

RLOAD = (v + DF
RLOAD = resultant load of the drag, side, and vertical loads on
the wheels, 1b
VF = vertical load on the wheels, 1b
DF = drag (fore-aft) load on the wheels, 1lb
SF = side (lateral) load on the wheels, 1b

The direction cosines of the resultant load are then computed.

VF

CRV = RLOAD | (18)
DF

CRFA = RLOAD. (19)
SF

CRL = RLOAD (20)

CRV = cosine of the angle between the resultant load and the
vertical

CRFA = cosine of the angle between the resultant load and the
fore-aft direction

CRL = cosine of the angle between the resultant load and the
lateral direction
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The direction cosines of the main gear strut are functions of the
fore-aft and lateral angles in the input data,

0.5
CSV = cos |tan™! [ - i 1 > - 2] (21)
(cos[ad)) *  (cos[3)
0.5
CSFA = cos tan'l[ 1 z-z] (22)
(sin[Al]) (cos [AZ])
0.5
CSL = cos tanl[ 1 5+ . 5 -2 (23)
l (cos [a1)) (cos [AZ])
CSV = cosine of the angle between the strut and the vertical
CSFA = cosine of the angle between the strut and the fore-aft
direction
CSL = cosine of the angle between the strut and the lateral
direction
Al = fore-aft angle of strut, radians
A2 = lateral angle of strut, radians
The .lateral angle (A2) of the nose gear strut is always 0; therefore,
equations 21 through 23 reduce to 24 through 26 for the nose gear.
CSV = cos [Al) (24)
CSFA = sin [A]] (25)
CSL = 0 (26)
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The direction cosines of the resultant force and the direction cosines
of the strut can then be combined to compute the angle between the resultant
load and the strut.

ANG = cos [csv CRV + CSFA CRFA + CSL cm.] 27)

ANG = angle between the resultant load and the strut, radians

The axial and normal loads on the strut are then computed.
ALOAD = RLOAD cos [ANG) (28)
PLOAD = RLOAD sin [ANG] (29)

ALOAD = axial load on the strut, 1b

PLOAD = normal load on the strut, 1b

LANDING AND GROUND LOADS

The ground reactions on the wheels (VF, DF, and SF) for each load condi-
tion are detemined in accordance with the procedure outline in MIL-A-008862A.
After the loads have been determined, the program then, except for the spring-
back condition, uses the method described in equations 17 through 29 to find
the axial and normal loads on the strut.

1)

TWO-POINT LANDING

The vertical load on the wheels at the two-point landing condition is
the maximum vertical load.

The maximum vertical loads on the main gear are computed by equations
30 and 31.

1.5 (NG'I‘O S Cl..w) (GRWI‘TO - DWT)

WMG, = > (30)
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VMXM}L

1.5 (NG, - ) GRWT,
- GL ZCLW L (31)

V!\D(M;T = maximum vertical load on main gear at takeoff weight,
O

VM)M;L = maximm vertical load on main gear at landing weight,
1b

The maximum vertical loads on the nose gear are determined from the maxi-
mum vertical loads on the main gear.

sy, - 2 wney 12

(32)

1)
WONG, = 2 WooG, ( oToT (33)

WGTO = maximum vertical load on nose gear at takeoff weight,
1b

VMXNGL = maximum vertical load on nose gear at landing weight,
1b

Am = distance from CG at takeoff to main gear, in.
AL = distance from CG at landing to main gear, in.
DIST = distance from main gear to nose gear, in.
The two-point landing loads are determined for both the main and nose
gears at both the takeoff and landing weights. Therefore, the routine in

equations 17 through 29 is executed four times. In each case, the drag load
is one-quarter of the vertical load and the side load is 0.

VF = VMXMGTO, \MXM;L, VMXNGTO, and VM)(NGL

DF = 0.25 VF

SF =0
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SPINUP

Before computing the spinup loads, the inertia of the nose gear wheels,
tires, and tubes must be determined. (The inertia of the main gear wheels,
tires, tubes, and brakes has already been detemmined.)

1232.52) "W\ 1z 2.5 JMHEEL
IH, = . 27

( oD, )zn (0D - 1.818 Wy \

IWN = inertia of nose gear wheels, tires, and tubes, slug-ft?Z
The spinup loads are determined for both the main and nose gears at both

the takeoff and landing weights; therefore, equations 28 through 35 are exe-

cuted four times, each time followed by the routine in equations 17 through 29.

TV, the time to develop the spinup vertical reaction, is computed by
equation 28.

£ 0.5
sS - (ss2 - 1.5 (NG - CL) 20.8 (BEE4 0,08 on))

1.5 (NG S CLW) 14.9

TV =

(28)

TV = time to develop the vertical reaction, sec

SS = sink speed, either SSTO or SSL’

NG = load factor, either NGTO or NG

ft/sec

L

STREFF = effective stroke of main or nose gear at takeoff or
landing weight, ft

0D = outside diameter of tires, either OI}1 or ODN, ft
TSU, the time for the wheel circumferential velocity to reach ground

velocity, is computed by equation 29.

VL IW
0.55 WX (0.432 0D)

TSU = + 0.363 TV (29)

2
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TSU = time for wheel circumferential velocity to reach ground
velocity, sec

VL = landing speed, either V1...ro or VLL’ ft/sec
IW = inertia of the wheels, tires, tubes, and brakes, either

IV, or IH, slug-ft2

WX = maximm vertical load, either VMXM;T , VWOMG, , or
WONG, , 1b 4 L

If TSU is greater than TV, TSU is recomputed by equation 30.

TSU = 0—?'51— st - Lo L ZPI (30)
' 1.1 (0.43200)° WX TV

FVSU, the vertical load at time TSU, is computed by either equation 31

or 32.
FVSU = WX sin 'Z’I ;?u] when TV > TSU (31)

FVSU = VX when TSU > TV (32)
FVSU = the vertical spinup load at time TSU on either the main
or nose gear at either the takeoff or landing weight, 1b

The vertical, drag, and side loads are then detemined by equations 33
through 35.

VF = FVSU (33)
DF = 0.55 FVSU (34)
SF = 0 (35)
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SPRINGBACK

The springback loads are detemmined for both the main and nose gears at
both the takeoff and landing weights.

The springback loads are computed from the maximum vertical loads, the
previously computed spinup loads, and the fore-aft angle of the strut, with-
out going through the routine in equations 17 through 29,

ALSB = VX CSV (36)

+ 0.9 FVsu sin[Al]]

NL.. = AMAX1 [0.893 NLg,» 0.893 NLg,

SB
+ WK sin [A1) 37

= axial load on either the main or nose gear strut at
either the takeoff or landing weight for the spring-
back condition, 1b

NL., = nomal load on either the main or nose gear strut at
either the takeoff or landing weight for the spring-
back condition, 1b

NL_.,, = normal load on either the main or nose gear strut at
either the takeoff or landing weight for the spinup
condition, 1b

BRAKED ROLL

The braked roll loads are determined at both the takeoff and landing
weights for the main gear only.

1.5 GRWT BRC (38)

VF = >
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DF = 0.8 VF (39)
SF =0 (40)

GRWT = gross weight, either GRWI‘T0 or GRWI‘L, 1b

BRC = braked roll constant (1.0 at takeoff, 1.2 at landing)

DRIFT LANDING

The drift landing loads are determined at both takeoff and landing weights
for the main gear only.

VF = 0.5 WX (41)
DF = 0 (42)
SF = 0.8 VF (43)

UNSYMMETRICAL BRAKING

The unsymmetrical braking loads are determined for both the main and nose
gears at both the takeoff and landing weights.

Before computing the unsymmetrical braking loads, BTO and BL must be
defined.

BTO = distance from CG at takeoff to nose gear, in.

BL = distance from CG at landing to nose gear, in.

The main gear loads at takeoff and landing are camputed by equation 44
through 46.

1.5 GRWT B (44)

VF = 573 CGG + 2 DIST
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DF = 0.8 VF (45)

SF =0 (46)

B = distance from CG to nose gear, either BTO or BL’ in,

CGG = distance from CG to ground, in.

The nose gear loads at takeoff and landing are computed by equations 47

through 49,
VF -/D?ST R0 BZCGG) 1.5 GRWT (47)
\ DIST
DF = AMINI [o.s vg, S IMGS 1.5 GRT ] (48)
4 DIST
SF = 0 (49)

A = distance from (G to main gear, either A.ro or AL’ in.
IMGS = distance between main gear struts, in.

AMIN1 = absolute minimum of the two arguments

TOWING

The towing loads are determined for both the main and nose gears at the
takeoff weight only.

FTOW, the tow load, must first be computed as a function of the takeoff
weight.

FTOW = 0.3 GRWT ) (when GRWT, . < 30,000) (50
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6 GRWT., |
= + 6,429 (when 30,000 GRWT, . < 100,000) (51)

FTOW = T0

FTOW = 0,15 GRWT > 100,000) (52)

10 (when GRW’I‘T

0

FTOW = tow load, 1b

The main gear towing loads are then computed by equations 53 through 55.

1.5 GRWT.. B

TO ~TO
L5 2 DIST (53)
DF = 1.5 FTOW 0.75 (54)
SF =0 (55)

The nose gear towing loads are computed by equation 56 through 58.

Al. 1.5 GRWT

0 T0

VF = DIST (56)
DF = 1.5 FTOW (57)
SF=0 (58)

TURNING

The tuming loads are detemmined for both the main and nose gear at the
takeoff weight only.
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The main gear tuming loads are camputed by equations 59 through 61.

VF = 1.5 GRWT, % + AMINL [ol')‘;‘s:m , ouiccszcc] (59)

DF = 0 (60)
0.5 Bry DMGS

SF = VF AMIN1 [0.5, —DisT ooe— (61)

The nose gear turning loads are computed by equations 62 through 64.

e 0 15 g "

DF =0 (63)
0.5 By DMGS

SF = VF AMIN] [0.5, TG (64)

STRUT DESIGN LOADS

The inner and outer cylinder weights are determined by computing the area
at the four sections shown in Figure 37. The area at each section is computed
for each load condition at which loads have been computed (or input), with the
maximum area being saved for the final weight calculation.

The analysis of the inner and outer cylinders is identical for the main
and nose gears (except that the drift landing condition does not apply to the
nose gear); therefore, only the main gear calculations are described.

The deflections at the bottom of the strut must be determined before the
moments at a section can be computed. The deflections are assumed to be pro-
portional to the square of the distance from the trunion; therefore, if the
deflections at section 2 are known, the deflections at the bottom of the strut
(the axle) can be computed by equations 65 through 68.
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RB2 = (Torzgcwmcmz)z | | (65)
Yy = Y, RB2 (66)
Zyx = I, RB2 (67)
PHI, = PHI, KB2 (68)

RB2 = ratio of deflection at bottom of strut to deflection
= fore-aft deflection at bottom of strut, in.
= lateral deflection at bottom of strut, in.
PHI, = angular deflection at bottom of strut, radians
Y, = fore-aft deflection at section 2, in.
Z, = lateral deflection at section 2, in.
PHI, = angular deflection at section 2, radians

TOTLNG

length of strut, axle to trunion, in.

LNGTH length from axle to section 2, in.

2

When the deflections at the bottom of the strut are known, the fore-aft
bending moment at section I (I =1, 2, 3, or 4) can be computed by equation 69
(for each load condition except drift landing). Equation 69 is illustrated
in Figure 41,

BWY, = (YAX + | ECC sin [PHIAX] I-YI) AL + LNGTH, NL (69)
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@

Figure 41. Geometry representation for fore-aft bending moment derivation.
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MI = fore-aft bending moment at section I (I =1, 2, 3 or 4),
in.-1b '

ECC = eccentricity of wheels, in.

Y, = fore-aft deflection at section I, in.

I

INGTH, = length from axle to section I, in.

I
AL = axial load on strut at this load condition, 1b

NL = normal load on strut at this load condition, 1b
The deflections are initialized at 0. When the deflections are 0, equa-

tion 69 reduces to 70.

HVIYI = LNG'I'HI NL (70)

The lateral bending moment at section I is computed by equation 71 (for
each load condition except drift landing). Equation 71 is illustrated in

Figure 42.

B, - (ZAX + | ECC cos [PHIAX] l - zI) AL (71)

BMZI = lateral bending moment at section I, in.-1b

ZI = lateral deflection at section I, in.

If the deflection are all 0, equation 71 reduces to equation 72.

BMZ -,ECClAL (72)

I

The torsional bending moment is detemmined by using the normal load in
place of the axial load in equation 71; therefore, it can be computed by
equation 73,
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Figure 42. Geometry representation for lateral bending moment derivation.
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NL
THI - BYZ [AL—] (7%

TPHII = torsional bending moment at section I, in.-1b

For the drift landing condition, BMY; and TPHI{ are 0. The nommal load
acts at the ground instead of at the bottom of the strut; therefore, the dis-
tance from the section to the ground must first be found. The tire deflection
is assumed to be 8 percent of the outside diameter. Equation 74 is used to
calculate the distance.

-

DLLNGI = I.NG'I'l'iI M 0.08 01%1 (74)

DLLNGI = length from ground to section I, in.

The nommal load computed for the drift landing condition is 0.8 times the
axial load. This normal load acts inboard, as shown in Figure 43. A normal
load equal to 0.6 times the axial load (and therefore equal to 0.75 times the
computed normal load) acts outboard on the opposite strut.

ZSEE |
Section |

NL = 0.6 AL ) _I_ NL = 0.8 AL )
(4

Figure 43, Drift landing normal loads.

—.|scc —

B
()

DLLNG|
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If the eccentricity is negative (outboard), as shown in Figure 43. The
moment at a section will be greater from the smaller normal load acting out-
board than from the larger nommal load acting inboard if the eccentricity is
greater than 10 percent of the length from the ground to the section.

(0.6 AL) (DLLNGI) + (AL) (ECC) > (0.8 AL) (DLLNGI) - (ECC) (AL) (75)

DLLNGI

10

if ECC|>

In this case, equation 75 is used to campute the lateral bending moment,
using a normal load equal to 0.75 times the computed normal load. Equation 75
is illustrated in Figure 44.

BMZI = (ZAx +

ECC I- ZI) AL + DLLNGI 0.75 NL (76)

If the deflections are all 0, equation 76 reduces to equation 77.

BMZ, = I ECCI AL + DLING, 0.75 NL a7

When the eccentricity is negative but less than one-tenth of the distance
to the ground, the lateral bending moment for drift landing in computed by
equation 78. Equation 78 is illustrated in Figure 45.

I\ = o o )
BlZI (ZAx ZI | ECC | AL + DLLNGI NL (78)
If the deflections are all 0, equation 78 reduces to equation 79.

B, = -IECCI AL + DLING| NL (79)
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O

Figure 44. Lateral bending moment for drift landing when the eccentricity
is negative and greater than one-tenth the length to the ground.
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Figure 45.
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Lateral bending moment for drift landing when the eccentricity is
negative and less than one-tenth the length to the ground.
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When the eccentricity is positive (inboard), the lateral bending moment
from the computed nommal load acting inboard is always the larger moment. This
bending moment is computed by equation 80. Equation 80 is illustrated in
Figure 46.

BMZ_ =

I (ZAX+ECC-ZI)AL*DLLNGINL (80)

If the deflections are all 0, equation 80 reduces to equation 81.

BMZI = ECC AL + DI..LNGI NL (81)

The resultant of the fore-aft and lateral bending moments is camputed by
equation 82.

) 5 0.5
BR - (EMYI + BMZ ) (82)

BMR. = resultant of fore-aft and lateral bending moments at
section I

STRUT SYNTHESIS

The area of the cylinder at each section is detemmined by finding "the
value of the cylinder diameter to wall thickness ratio for which the area
required for strength is equal to the geometric area.

The search starts by assuming three values of diameter-to-wall-thickness
ratio, and then computing the outside diameter of the cylinder for each of the
assumed ratios. The outside diameter of the inner cylinder at section 4 is
the piston diameter, DPy. The outside diameter of the outer cylinder at
sections 1, 2, and 3 is computed by equation 83, The 0.625 added to the piston
diameter is the assumed average packing ring dimension.

DOT (DP, + 0.625)
DIA, = Tt (83)
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Figure 46. Lateral bending moment for drift landing
when the eccentricity is positive,
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DIA; = outside diameter of cylinder at section I for assumed
value of diameter to wall thickness ratio, in.

DOT = diameter to wall thickness ratio
Before the area can be computed, the bending modulus of rupture and the

torsion modulus of rupture must be detemmined as functions of the diameter-
to-wall-thickness ratio and the ultimate tensile strength of the material.

BMRU = «(0.000390625 T - 0.3125) T + 14.21875) DOT -
- 0.0546875 T2 - 903.125) DOT - (3.2421875 T - 2903.125)T

- 142890.625 (84)

TMOR = «(0.00109375 T - 0.396875) T + 47.5) DOT + (0.05 T - 27.25)T

+ 1725.0) DOT + 143.4875 T + 38702.5 (85)

BMRU = bending modulus of rupture, 1b/in.?2
TMOR = torsion modulus of rupture, 1b/in.?2
T = ultimate tensile strength divided by 1,000, 1b/in.2 X 10-3
Figures 47 and 48 show the results of equation 84 and 85 for values of
ultimate tensile strength from 180 to 260K, and for values of diameter-to-

wall-thickness ratio from 10.0 to 50.0.

The area required for strength can then be computed by equation 86.

0.5
2 2
8 (BMRI) . (’I‘PHI AL
BVMRU TMOR FCY

(86)
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BENDING MODULUS OF RUPTURE

360000.

BENDING MODULUS OF RUPTURE VS DIAMETER/THICKNESS RATIO
FOR VALUES OF ULTIMATE TENSILE STRENGTH FROM 180K TO 260K

240000.

200000,

180000.

DIAMETER/WALL THICKNESS RATIO

Figure 47.

.2 [

Bending modulus of rupture.
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BENDING MODULUS OF RUPTURE

BENDING MODULUS OF RUPTURE VS DIAMETER/THICKNESS RATIO
FOR VALUES OF ULTIMATE TENSILE STRENGTH FROM 180K TO 260K
150000.

260K 4§

EEEHL

o N

NN
IENNNNN;

100000. : N

V000 . —
0 10.0

20.0 30.0
DIAMETER/WALL THICKNESS RATI10

Figure 48. Torsion modulus of nipture.

530



T AN AT R N SR OO TS Wk Ll s d T AT AN TN RGO A AT NI " v ¢ T

y

AS = area required for strength for assumed value of DOT, in.2

T

FCY = compression yield stress, 1b/in.2

The geometric area for the assumed value of diameter to wall thickness is
camputed by equation 87,

2

AG = PI DIAIZ (—I’-O-Ll) (87)
DOT

AG = geometric area for assumed value of DOT, in.2

The ratio of the area required for strength to the geometric area is then
determmined for each of the three assumed values of diameter-to-wall-thickness
ratio.

AS
Re 35 (88)

R = ratio of area required for strength to geometric area

The program interpolates in the three assumed values of DOT to find the
value for which R = 1. Three new values of DOT are then assumed (the inter-
polated value, and one on either side), and a second pass is made through
equations 83 to 88. The program interpolates for the final value of the
diameter-to-wall-thickness ratio, and then calculates the final diameter and
area.

' povr (D, + 0.625) ;
(89) :

DIAM = ——-—t
AREAC = PI DIAM? (—QOXT—ZI—) (90)
DOVT
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DIMM = final outside diameter of cylinder for this load
condition, in.

AREAC = final area of cylinder section for this load condition,
in,

DOVT = final interpolated value of DOT for which R = 1

AREAC is saved if it is greater than any area previously computed at
that section for another load condition,

At section 2, the diameter, DIAM, and the three moments are also saved,
for use in the deflection analysis.

DEFLECTION ANALYSIS

As noted earlier, the deflections are initialized at 0. The first pass
through the calculations of the area of the four cylinder sections (equations
65 through 90) is made with deflections equal to 0; therefore, equations 69,
71, 76, 78, and 80 reduce to equations 70, 72, 77, 79, and 81.

If the input data indicate that the deflection analysis is to be omitted,
the program goes on to compute the inner and outer cylinder weights after the
first pass through the area calculations.

If the deflections are to be included, the deflections at section 2 are
computed, and the deflections at the other sections are then detemmined by
assuning that the deflections are proportional to the square of the distance
from the trunnion.

The moment of inertia at section 2 must be determined before the deflec-
tions can be calculated.

p1 pranz’ (1 - 551@) (1 - (ﬁﬁvzm) (1 Evlﬁ))

8 DOVRT2

I2 = (91)

I2 = moment of inertia at section 2, in.4
DIADZ = diameter of outer cylinder at section 2, in.

DOVRT2 = diameter-to-wall-thickness ratio at section 2
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The deflections at section 2 can now be calculated by equations 92
through 94,

BMYDZ (TOTLNG - LNGTH )2
Y, = 2 (92)
2 2'E 12
BMZDZ (TOTING - LNGTH )2
Z, = Z 93)
2 2 EI2
TPHIDZ (TOTING - LNGTH,)
PHI, = 26 12 (54)
BMYDZ = fore-aft bending moment from load condition which pro-
duced maximum area at section 2, in.-1b
BMZDZ = lateral bending moment from load condition which pro-

duced maximum area at section 2, in.-1b

TPHIDZ = torsion moment from load condition which produced the
maximum area at section 2, in.-1b

E = modulus of elasticity, 1b/in.2

G = modulus of rigidity, 1b/in.2

The deflections at sections 3 and 4 are then calculated by equations 95
through 98.

/ TOTLNG - LNGTH, 2
RIZ = \TOTLNG = INGTH, (95)
Y. = Y. RI2 (96)

I Z
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Z. RI2 . (97)

PHT_ = PHI, RI2 | (98)

RI2 = ratio of deflection at section 2

I’HII

angular deflection at section I, radians

The program then returns to recalculate the areas at the four sections,
starting with equation 65. This loop continues for six passes, or until the
area at section 2 is closer to the area from the previous pass than a given
tolerance.

INNER AND OUTER CYLINDER WEIGHT

The weight of the outer cylinder is determined from the areas of sec-
tions 1, 2, and 3.

WTOC =(AR]:A1 e A:EAZ 5 AREs—)(LNGI‘HI S LNGIHS)

STRUTS RHO WCOC (99)

WTOC = weight of outer cylinder, 1b

AREAI = maximum of areas computed at section I for each load
condition, in.2

STRUTS = number of struts, main or nose gear (always for nose
gear)

RHO = density of material, 1b/in.3

WCOC = weight coefficient for outer cylinder
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The inner cylinder extends from the axle to section 2, the midpoint of
the outer cylinder, as shown in Figure 37. The diameter of the imner cylinder
is DRy, the piston diameter. The part of the inner cylinder from the axle
to section 3 has the area computed at section 4, and the part from section 3
to section 2 has an area based on an assumed diameter-to-wall-thickness ratio.

o N
{ PI DB~ (DOT32-1) (LNGTH,-LNGTH,)
WTIC = : + AREA, LNGIH,
\ DOT32

STRUTS RHO WCIC (100)

WTIC = weight of inner cylinder, 1b

DOT32 = assumed diameter-to-thickness ratio of inner cylinder
between sections 2 and 3

WCIC = weight coefficient for inner cylinder

AXLE WEIGHT

There is one axle for each wheel on both the main gear and nose gear.
The length of the axle is computed by equation 101. (See Figure 38.)

AXLGTH = W +¥ (101)

AXLGTH = length of axle, in.
W = width of tires, either WM or WN, in,

DP = piston diameter, either DPM or DPN, in.

The total load on the axles is computed by equation 102 for the main
gear, and 103 for the nose gear.

AXLOAD = GRWI‘.I. (102)

0
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AXLOAD = GRWI‘.ro - SW SI'RU'I‘M (103)

AXLOAD = total load on axles for either main or nose gear, 1lb

The bending moment at the side of the piston and the torsion moment are
computed by equations 104 and 105. These equations assume that one tire is
flat when there are two wheels on a main or nose gear strut, and that two
tires on a strut are flat when there are four wheels on the main gear struts.

AXLOAD 2
BMAX = I'S(AMAXI 5wy " (smurs) (104)
(L0.8 axcoap) [on\[_2
TMAX = 1.5 "0axT [2, %S (z )(smrrs) (105)

BMAX = bending moment on each axle, in.-1b
T™AX = torsion moment on each axle, in.-1b
WS = number of wheels per strut, either WSH or WSN
AMAX1 = absolute maximum of the two arguments
Although the axle is a solid cylinder, the bending modulus of rupture
and torsion modulus of rupture are computed by equations 84 and 85, using a

value of diameter-to-wall-thickness ratio equal to 10. The diameter of the
axle at the side of the piston can now be computed.

0.5 0.333

2 2
32 ((BMAX)“ | (_TMAX
DI =|\p1 (\BMRU) * 2 'IMOR)) ate)

DIAAX = diameter of axle at side of piston, in.

The total weight of all the axles on e.ther the main or nose gear can
then be computed by equation 107.
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WTAXL = PI (l";—“-) AXLGTH WS STRUTS RHO (107)

WTAXL = total weight of axles for either main or nose gear

BOGIE WEIGHT

The weight of the bogie is calculated only when there are four wheels
per strut on the main gear. The length of the bogie is computed by equation
108. (See Figure 39.)

BOGL = 1.1 OIJM + DPM (108)

BOGL - length of bogie, in.

Each half of the bogie is a separate structural element, supporting the
loads on two axles. Each tire will normally carry one-eighth of the total
aircraft weight, but when both tires on one axle are flat, the two remaining
tires on that strut will each carry one-fourth of the total weight. Assuming
a side load of 0.8 times the vertical load, equations 109 and 110 will com-
pute the bending moment and torsion moment at the midpoint of the bogie.

GRT 2
BB = (1.5(2)( ; TO) (c'nzwr ))

M
2 0.5
0.8 GRWT,
. : 0\ [ 2 BOGL
(1.5(2)( . ) \S'rkurM» == (109)
0.8 GRWT 0
™ = 1.5(2)( 7 TO) (ST!Z?.UI‘ )( ?’) (110)
M
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BMB = bending moment at midpoint of bogie, in.-1b
T™B = torsion moment at midpoint of bogie, in.-1b
The bending modulus of rupture and the torsion modulus of rupture are
computed by equations 84 and 85, using an assumed value of diameter-to-wall-

thickness ratio. The diameter of the bogie can then be calculated by
equation 111, '

0.333

2 (m2)’ . (ma))
i (111)

"DOTB -2 ( (DOTB -2 )

BD =

1+ \Toots

/—\

BD = diameter of bogie, in.
DOTB = assumed value of diameter-to-wall-thickness ratio for bogie

The weight of the bogie can then be computed by equation 112.

BWT = PI BD (ﬂ%—l—) BOGL STRUT.. RHO WCB (112)
DOTB M

BWT = weight of bogie, 1b

WCB = weight coefficient for bogie

SIDE_STRUT AND DRAG STRUT WEIGHT

The weight of the main gear side strut is computed for the drift landing
and tuming conditions. The maximum weight is saved. The nose gear side
strut is computed for the turning condition. (See Figure 40.)

SSWT = 0.7698 TOTLNG (I?:CY RHO STRUTS WCSS (113)
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SSWT = weight of main or nose gear side strut, 1b
WCSS = side strut weight coefficient

The weight of the drag strut is computed for all conditions except drift
landing and turming. The maximum weight is saved.

DSWT = 0.7698 TOTLNG (%) RHO STRUTS WCDS (114)

A

DSWT = weight of main or nose gear side strut, 1b

WCDS = drag strut weight coefficient

OIL WEIGHT

The weight of the oil is calculated by equation 115.

2
WTOIL = PI (Iz’—p) 1.5 STROKE STRUTS DOIL (115)

WTOIL = weight of oil for either main or nose gear, 1b
STROKE = stroke of either main or nose gear, in.

DOIL = density of oil, 1b/in.3
MISCELLANEQUS WEIGHT
The miscellaneous weight is a function of TOTCAL, the total calculated
structure weight, and TOTSTW, the total calculated weight.

TOTCAL = WTOC + WTIC + WTAXL + WTOIL + SSWT + DSWT + BWT (116)

TOTSTW = TOTCAL + WITB (117)
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TOTCAL = total calculated structure weight of either main or nose
gear, 1b

TOTSTW = total calculated weight of either main or nose gear, 1b

WITB = weight of wheels, tires, tubes, and brakes for either
main or nose gear, 1b

The miscellaneous weight is calculated by equation 118 for the main gear,
and equation 119 for the nose gear.

WIMISC = (WOMG-1) TOTCAL + WOMG (0.25 TOTSTW + 0.50 TOTCAL

+ 0.001 GRWI‘TO) (118)

WIMISC = (WCNG-1) TOTCAL + WCNG (0.25 TOTSTW + 0.50 TOTCAL + 15)(119)

WIMISC = miscellaneous weight of either main or nose gear, 1lb
WOMG = main gear weight coefficient

WCNG = nose gear weight coefficient

TOTAL WEIGHT
The total weight of the main gear is calculated by equation 120, and the
total weight of the nose gear by equation 121.
TOTAL = TOTSTW + WIMISC + WMI (120)

TOTAL = TOTSTW + WIMISC (121)

TOTAL = total weight of either main or nose gear, 1b

WMI = input miscellaneous weight, 1b

540



TAIL WHEEL WEIGHT

If the auxiliary gear is a tail wheel instead of a nuse gear, equation 122
is used, where TOTSTW is the total calculatcd weight of the main gear.

Torsmw’* 2% (eur, ) - sw strur, ) 0+62%

T0
TAILWT = e2.024 (122)

TAILWT = weight of tail wheel, 1b

CENTER OF GRAVITY

The centers of gravity of the main gear and the nose gear are determined
by calculating the center of gravity of the total of the calculated components
(inner cylinder, outer cylinder, axle, brakes, tires, etc.). This assumes
that the miscellaneous weight has the same CG as the calculated components.
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Section III

PROGRAM DESCRIPTION

GENERAL DISCUSSION

The methods, equations, and logic discussed in section II have been
programmed in FORTRAN for the CDC 6600 computer. The landing gear program
is in overlay (6, 0) of SWEEP. This overlay contains the main program
(LANDGR) and five subroutines. The program subroutine flow diagram is shown
in Figure 49, The functional flow diagram is shown in Figure 50.

"'"""""'-I

Igffo
lo lofe
I@ le o

Figure 49, Subroutine flow diagram.
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Figure 50. Functional flow diagram.
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MASS STORAGE FILES

Mass storage file record 25 is the only record read in the landing gear
program, Record 25 is read in program LANDGR. No mass storage file records
are written in the landing gear program.

Record 25 contains the landing gear input data array D. Array D is
placed in labeled common block/LGDATA/ so that the input data may be trans-
ferred to subroutines LGEAR and LGWT.

INPUT DATA

The input to the landing gear program is contained in Array D, which
has 116 locations.

The first 45 locations contain permanent data which are read from the
pemanent data file, TAPE 7. Table 31 contains a description of the per-
manent data and lists the values which are stored in the permanent data file.
These stored values may be changed when the variable input data for the
landing gear are read.

Locations 46 through 116 in Array D contain the variable input data,
The variable input data are described in Table 32.

TABLE 31. INPUT ARRAY D — PERMANENT DATA

Subroutine
Loc Description Value Reference
1 Fraction of energy absorbed by strut 0.1 LGEAR
2 Ratio of nose gear piston diameter to main .6 LGWT
gear piston diameter
3 | Spinup coefficient 1.4 LGEAR
4 | Springback coefficient .893 LGEAR
S | Main gear miscellaneous weight factor .25 LGWT
6 | Main gear miscellaneous weight factor .50 LGWT
7 Main gear miscellaneous weight factor .001 LGWT
8 | Nose gear miscellaneous weight factor .25 LGWT
9 | Nose gear miscellaneous weight factor .50 LGWT

544




TABLE 31. INPUT ARRAY D — PERMANENT DATA (CONT)

Subroutine
Loc Description Value Reference
10 | Two-point coefficient .25 LGEAR
11 | Drift landing coefficient .8 LGEAR
12 | Area tolerance (square inches) ol LGWT
13 | Landing speed constant 34.7776 LGEAR
14 | Load factor constant .98 LGEAR
15 | Load factor constant .08 LGEAR
16 | Load factor constant .8 LGEAR
17 | Tail wheel weight equation constant 2.024 LGWT
18 [ Tail wheel weight equation constant 2963 LGWT
19 [ Tail wheel weight equation constant .6238 LGWT
20 | Diameter-to-thickness ratio factor .8 LGWT
21 Diameter-to-thickness ratio factor 1.0 LGWT
22 | Diameter-to-thickness ratio factor 1,2 LGWT
23 | Main gear stroke coefficient at takeoff 1.0 LGEAR
24 | Main gear stroke coefficient at landing 1.0 LGEAR
25 | Pounds of brake per foot-pound of kinetic .408 x 1073 LGEAR
energy
26 | Diameter-to-thickness ratio of inner cylinder 50.0 LGWT
above section 2

27 | Negligible load check (pounds) 100.0 LGWT
28 | Diameter-to-thickness ratio of bogie 20,0 LGWT
29 | Assumed diameter-to-thickness ratio 10.0 LGWT
30 | Assumed diameter-to-thickness ratio 30.0 LGWT
31 | Assumed diameter-to-thickness ratio 50.0 LGWT
32 Diameter-to-thickness ratio of axle 10.0 LGWT
33 | Nose gear stroke coefficient at takeoff 1.0 LGEAR
34 | Nose gear stroke coefficient at landing 1.0 LGEAR
35 | Number of main gear struts 2.0 LGEAR, LGWT
3 | Density of oil (pounds/cubic inch) .03 LGWT
37 Braked roll constant 1.0 LGEAR
38 Braked roll constant 1,2 LGEAR
39 Fraction of strut length to section 1 1.00 LGWT
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TABLE 31. INPUT ARRAY D — PERMANENT DATA (CONCL)
Subroutine
Loc Description Value | Reference
40 |Fraction of strut length to section 2 .60 LGWT
41 {Fraction of strut length to section 3 .20 LGWT
42 |Fraction of strut length to section 4 A2 LGWT
43 lUltimate-to-limit ratio 1.5 LGEAR, LGWT
44 [Not used
45 |Not used
TABLE 32, INPUT ARRAY D — VARIABLE DATA
Subroutine
Loc Description Units | Note(s)| Reference
46 |Takeoff weight 1b 1 LGEAR, LGWT
47 |Landing weight 1b 1 LGEAR, LGWT
48 [Aborted takeoff 4 weight 1b 1 LGEAR
49 |Fuselage station of CG of aircraft at in. 1 LGEAR, LGWT
takeoff
50 |Fuselage station of CG of aircraft at in, 1 LGEAR
landing
51 |Distance from aircraft CG to ground in, 1 LGEAR
52 |Fuselage station of main gear in, 1 LGEAR, LGWT
53 |Fuselage station of nose gear (or tail in. 1 LGEAR, LGWT
wheel)
54 [Distance between main gear struts in, 1 LGEAR
55 [Ultimate tensile strength of material | 1b/in,2 LGWT
56 |Poisson's ration of material LGWT
57 |Compression yield stress of material lb/in.2 LGWT
58 [Modulus of elasticity of material 1b/in.§ LGWT
59 |Density of material 1b/in. LGWT
60 [Main gear deflection indicator 2 LGWT
61 [Nose gear deflection indicator 2,3 LGWT
62 |Auxiliary gear indicator 3 LGEAR, LGWT
63 |Weight coefficient for main gear LGWT
64 |Weight coefficient for nose gear 3 LGWT
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TABLE 32, INPUT ARRAY D — VARIABLE DATA (CONT)
Subroutine
Loc Description Units Note(s)| Reference
65 |Weight coefficient for outer cylinder LGWT
of main and nose gear '
66 |Weight coefficient for inner cylinder LGWT
of main and nose gear LGWT
67 |Weight coefficient for bogie LGWT
68 |Weight coefficient for main gear drag 2 LGWT
strut
69 |Weight coefficient for main gear side 2 LGWT
strut
70 |Weight coefficient for nose gear drag 2,3 LGWT
strut
71 |Weight coefficient for nose gear side 2,3 LGWT
strut
72 |Axle to trunnion length of main gear in, 1 LGWT
with piston extended
73 [Stroke of main gear in, 1,4 LGEAR, LGWT
74 |Piston diameter of main gear in, 5 LGWT
75 |Eccentricity of main gear wheels in, 6 LGWT
76 |Wheels per strut on main gear 7 LGEAR, LGWT
77 |For-aft angle of main gear strut deg 8 LGEAR, LGWT
78 |Lateral angle of main gear strut deg 8 LGEAR, LGWT
79 |Outside diameter of main gear tires in, LGEAR, LGWT
80 |Width of main gear tires in, LGEAR, LGWT
81 |Axle to trunnion length of nose gear in. 1,3 LGWT
with piston extended
82 |Stroke of nose gear in. 1,3,4 | LGEAR, LGWT
83 |Piston diameter of nose gear in, 3,5 LGWT
84 |Eccentricity of nose gear wheels in. 3,6 LGWT
85 |Wheels per strut on nose gear 3,7 LGEAR, LGWT
86 |Fore-aft angle of nose gear st: t deg 3,8 LGEAR, LGWT
87 |Outside diameter of nose gear tires in, 3 LGEAR, LGWT
88 |Width of nose gear tires in, 3 LGEAR, LGWT
89 |Sink speed at takeoff weight ft/sec 1,9 LGEAR, LGWT
90 [Sink speed at landing weight ft/sec 1 LGEAR
91 |Landing speed at takeoff weight ft/sec 1,10 LGEAR
92 [Landing speed at landing weight ft/sec 1,10 LGEAR
93 [Limit load factor at takeoff weight 11 LGEAR
94 [Limit load factor at landing weight 11 LGEAR
95 |Coefficient of lift at takeoff weight 10 LGEAR
96 [Coefficient of 1lift at landing weight 10 LGEAR
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TABLE 32. INPUT ARRAY D — VARIABLE DATA (CONT)

Subroutine
Loc Description Units Note(s)| Reference
97 | Area of wing ft2 | 10 LGEAR
98| Wing lift coefficient LGEAR
99 | Not used LGEAR
100 | Main gear wheel weight per aircraft 1b . 12 LGEAR
101 | Inertia of main gear wheels, tires, slug ft 13 LGEAR
tubes, and brakes
102 | Main gear tire weight per aircraft 1b 12 LGEAR
1u. | Brake weight per aircraft . 1b 12 LGEAR
104 | Main gear miscellaneous weight per 1b 14 LGWT
aircratft
105 | Nose gear whe2l weight per aircraft 1b 3,12 LGEAR
106 | Nose gear tire weight per aircraft 1b 3,12 LGEAR
107 | Main gear axial load } any conditions 1b 9 LGEAR
108 | Main gear normal load) except turning 1b 9 LGEAR
or drift landing
109 | Main gear axial load . . - 1b 9 LGEAR
110 | Main gear nommal load} Drift landing
111 | Main gear axial load } Tummin 1b 9 LGEAR
112 | Main gear normal load g 1b 9 LGEAR
113 | Nose gear axial load } Any conditions 1b 3,9 LGEAR
114 | Nose gear normal load) except turning 1b 3,9 LGEAR
115| Nose gear axial load } Tumnin 1b 3,9 LGEAR
116 | Nose gear normal load 8 1b 3,9 LGEAR
1, If the takeoff weight is not input in location 46 of the landing gear
NOTE data, the data in locations 47-54, 72, 73, 81, 82 and 89-92 should also

(g ]
-

be omitted., The data in these locations will be transferred from the
general input data to the landing gear input data in subroutine DLNDGR
in the data management module,

If the main gear deflection indicator in location 60, or the nose gear
deflection indicator in location 61, is 0, the deflections of the strut
will be determined. If the deflection indicator is 1, the deflection
analysis will be bypassed in subroutine LGWT.

In theory, the deflections would be determined when there are no drag
and side struts supporting the main strut, and bypassed when there are
supporting struts, However, there is no restriction in the program,
and the user may ' sth deflections and supporting struts, or
neither,
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TABLE 32. INPUT ARRAY D — VARIABLE DATA (CONT)

The drag and side strut weights are always computed in subroutine LGWT,
but may be deleted by setting the corresponding weight coefficient to
0. The weight coefficients are in locations 68 through 71.

If the auxiliary gear indicator in location 62 is 1, the auxiliary
gear is a nose gear. The weight of the nose gear is determined in the
same manner as the main gear. If location 62 is 0, the auxiliary gear
is a tail wheel. The weight of a tail wheel is calculated from a
single statistical equation; therefore, the nose gear data in locations
61, 62, 64, 81-88, 105, 106, and 113-116 may be omitted.

The main gear stroke in location 73 and the nose gear stroke in loca-
tion 82 are in the vertical direction, not parallel to the strut
(wmnless the strut is perpendicular),

If the piston diameter of the main gear is not input in location 74, it
will be computed in subroutine LGWT as a function of the static load.

If the piston diameter of the nose gear is not input in location 83, it
will be computed in LGWT as a function of the main gear piston diameter.

The eccentricity is measured as shown in Figure 51. The eccentricity
is positive in the inboard direction, negative in the outboard
direction.

_‘|*°|‘_ —v-_eﬂln— e=0

Figure 51. Sign convention for main gear eccentricity.

e=0

The main gear must have 1, 2, or 4 wheels per strut. If there are 4
wheels per strut, the weight of the bogie will be determined in sub-
routine LGWT,

The nose gear must have 1 or 2 wheels per strut.
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TABLE 32. INPUT ARRAY D — VARIABLE DATA (CONT)

Lateral angle

The fore-aft and lateral angles of the main gear strut are measured as
shown in Figure 52. The fore-aft angle is positive in the forward
direction; the lateral angle is positive in the outboard direction.
The nose gear has only a fore-aft angle, as shown in Figure 53,

Trunnion Trunnion

Nose gear strut
Main gear strut

Fore-aft angle Fore-aft angle
Forward axle
Outboard Axle
Figure 52. Main gear strut Figure 53. Nose gear strut
angles. angles.

If the sink speed is input in location 89 in the landing gear data,
the loads will be computed in subroutine LGEAR, and the input loads in
locations 107 through 116 may be omitted.

If the sink speed is not input, the loads cannot be computed; one or
more sets of loads must be input for both the main gear and the nose
gear, If more than one set of loads is input, the program will deter-
mine the critical loads, just as when all the loads are computed.

If the main gear input loads are from either the two-point landing,
spinup, springback, braked roll, unsymmetrical braking, or towing
conditions, they are input in locations 107 and 108, The loads are
in the fore-aft direction, and must be input if the weight of the
main gear drag strut is to be computed.

If the main gear input loads are from the drift landing condition,
they are input in locaticns 109 and 110; if from turmning, they are
input in locations 111 and 112, Either the turning or drift landing
loads must be input if the weight of the main gear side strut is to
be computed.
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TABLE 32. INPUT ARRAY D — VARIABLE DATA (CONCL)

10.

11.

12,

LS

14,

If the nose gear input loads are from any condition except turning,
they are input in location 113 and 114. These loads are in the fore-
aft direction, and must be input if the weight of the nose gear drag
strut is to be camputed.

If the nose gear input loads are from the tuming condition, they are
input in locations 115 and 116. The tuming loads must be input if
the weight of the side strut is to be computed.

If the landing speed at takeoff weight is input in location 91, the
landing speed at landing weight must also be input in location 92,
and the wing area in location 97 and the lift coefficients in loca-
tions 95 and 96 may be omitted. If location 91 is 0, both landing
speeds will be computed fram the input data in locations 95, 96, and
97.

If the load factor at takeoff weight is input in location 93, the
load factor at landing weight must also be input in location 94, If
location 93 is 0, both load factors will be computed.

If the main gear wheel weight is input in location 100, the main
gear tire and brake weights in locations 102 and 103 and the nose
gear wheel and tire weights in locations 1(S and 106 must also be
input. If location 100 is 0, the wheel, tiic, and brake weights
for both the main and nose gears will be computed in subroutine
LGEAR,

If the inertia of the main gear wheels, tires, and brakes is not
input in location 101, it will be computed.

The miscellaneous weight input in location 104 is in addition to the
miscellaneous weight computed by statistical methods in subroutine
LGWT.

LABELED COMMON BLOCKS

The common block labeled/IPRINT/contains avray IP (80). Each location

in array IP is a print indicator. A '"0" indicates print, or "1'" indicates
do not print.
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Location 59 in array IP is used in program LANDGR to determine whether
the input data will be printed.

Location 60 in array IP is used in subroutine LGEAR to indicate
whether the landing gear loads will be printed.

The common block labeled/FDATT/contains array FDAT (60). The weight
sumary data from each component of the aircraft are stored in array FDAT,
Locations 41 through 50 in array FDAT are used to store the weights and
fuselage stations of the main gear and eitlier the nose gear or tail wheel,
These variables are described in Table 33.

TABLE 33. FDAT ARRAY VARIABLES

Subroutine
LoC Description Reference
41 Total main gear weight, 1b LGWT
42 Main gear wheel, tube, tire, and LGWT
brake weight, 1b
43 Main gear strut weight, 1b LGWT
44 Main gear miscellaneous weight, 1b LGWT
45 Fuselage station of main gear, in. LGWT
46 Total weight of nose gear or
tail wheel, 1b LGWT
47 Nose gear wheel, tube, and tire LGWT
weight, 1b
48 Nose gear strut weight, 1b LGWT
49 Nose gear miscellaneous weight, 1lb LGWT
50 Fuselage station of nose gear LGWT
or tail wheel, in.
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The common block labeled/LGDATA/appears in the landing gear program
only. This common block contains the input data array D; the landing gear
loads array FLOAD"; and the wheel, tire, tube, and brake weights.

The input array D is described in Tables 31 and 32,

The landing gear loads are computed in subroutine LGEAR and stored in
array FLOADS. This array is described in Table 34,

The wheel, tire, tube, and brake weights are also computed in subroutine
LGEAR, These variables are described in Table 3S5.
SUBRQUTINE DESCRIPTIONS
PROGRAM LANDGR

General Description

Deck name: LANDGR

Entry name: OVERLAY (SHALPHA, 6,0)
Called by: OLAYOO

Sub1outines called: LGEAR, LGWT

Program LANDGR is the main program of the landing gear module. It reads
the input data from mass storage file record 25, and prints the variable input
data if the print indicator is on. It then calls subroutine LGEAR to compute
the landing gear loads, and subroutine LGWT to compute the landing gear
weights,

Variables Calculated
Variable Description
N General index

Labeled Common Blocks

IP (59), which is taken from common block/IPRINT/, indicates whether
the variable input data in locations 46 to 116 of the input data ~rray will be
printed (Figure 54).
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TABLE 34, ARRAY FLOADS IN LGDATA BLOCK

Subroutine
LocC Description Units | Reference
1 | Axial load - two-point landing 1b LGEAR ,LGWT
2 Normal load - two-point landing
3 | Axial load - spinup
4 | Normal load - spinup
5 Axial load - springback
6 | Normal load -springback
7 | Axial load - braked roll
8 | Normal load - braked roll
9 Axial load - drift landing
10 | Normal load - drift landing x:ki‘goﬁar gt
11 Axial load - unsymmetrical weight
braking
12 Normal load - unsymmetrical
braking
13 Axial load - towing
14 Normal load - towing
15 Axial load - turning
16 Normal load - turning 1b LGEAR, LGWT
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TABLE 34, ARRAY FLOADS IN LGDATA BLOCK (CONT)

Subroutine
LoC Description Units | Reference
17 | Axial load - two-point landing 1b LGEAR ,LGWT
18 | Normal load - two-point landing
19 | Axial load - spinup
20 Normal load - spinup
21 Axial load - springback
22 Normal load - springback
23 | Axial load - braked roll
24 Normal load - braked roll
25 Axial load - drift landing ’htd:kirelogar 2
26 Normal load - drift landing weight
27 Axial load - unsymmetrical
braking
28 Normal load - unsymmetrical
braking
29
30
31
32 1b LGEAR,LGWT
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TABLE 34, ARRAY FLOADS IN LGDATA BLOCK (CONT)

VA LN

PRI

Subroutine
LoC Description Units| Reference
33 | Axial load - two-point landing 1b LGEAR, LGWT
34 | Normal load - two-point landing
35 | Axial load - spinup
36 | Normal load - spinup
37 | Axial load - springback
38 | Nommal load - springback
39
40
41 Nose gear at

ytakeoff
42 weight
43 | Axial load - unsymmetrical
braking
44 Normal load - unsymmetrical
braking

45 | Axial load - towing
46 Normal load - towing
47 Axial load - turning
48 | Normal load - tumning 1b LGEAR ,LGWT
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TABLE 34. ARRAY FLOADS IN LGDATA BLOCK (CONCL)

Subroutine
LOC Description Units | Reference
49 | Axial load - two-point landing 1b. LGEAR ,LGWT
50 Normal load - two-point landing’
41 Axial load - spinup
52 Normal load - spinup
53 | Axial load - springback
54 Normal load - springback Nose gear at
flanding
55 weight
56
57
58
59 | Axial load - unsymmetrical
braking
60 Normal load - unsymmetrical 1b LGEAR,LGWT
braking )
TABLE 35. WHEEL, TIRE, TUBE, AND BRAKE WEIGHTS
IN LGDATA BLOCK
Subroutine
Variable Description Units | Reference
TTAUX Weight per aircraft of nose gear tubes and 1b LGEAR, LGWT
tires -
TTMAIN Weight per aircraft of main gear tubes and
tires
WHEELA | Weight per aircraft of nose gear wheels
WHEEIM | Weight per aircraft of main gear wheels
\
BRAKES | Weight of brakes 1b LGEAR, LGWT
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The input data array D (Tables 31 and 32) is placed in common block/LGDATA/
so that the input data may be transferred to subroutines LGEAR and LGWT.

Mass Storage File Records

Mass storage file record 25, which-contains landing gear data array D, is
read. No mass storage file records are written,

SUBROUTINE LOADS

General Description

Deck name: LOADS
Entry name: LOADS
Called by: LGEAR
Subroutines called: None

Subroutine LOADS computes the axial and normal loads on the strut from
the drag, side, and vertical loads on the wheels,

Variables Input

Variable Description Units
CSFA Cosine of the angle between strut and fore-aft

direction
CSL Cosine of angle between strut and lateral direction
Ccsv Cosine of angle between strut and vertical
DF Drag (fore-aft) load on wheels 1b
SF Side (lateral) load on wheels 1b
VF Vertical load on wheels 1b
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Variables Calculated

Variable Description Units
ANG Angle between strut and resultant load radiansw
AXLOAD Axial load on strut 1b
CRFA Cosine of angle between resultant load and fore-aft

direction

CRL Cosine of angle between resultant load and lateral

direction

CRV Cosine of angle between resultant load and vertical
PLOAD Normal load on strut 1b
RLQOAD Resultant load of drag, side, and vertical loads 1b

on wheels
SUBROUTINE LG3P
General Description
Deck name: LG3P
Entry name: LG3P
Called by: LGWT
Subroutines called: None
Subroutine LG3P is a three-point interpolation routine. A second degree

curve, of the form shown in equation 123, is passed through three points in
order to determine the value of Y for a given value of X.

(XP-X;) (XP-X,) Yy  (P-X,) (XP-X,) Y,

YP

(XP-XI) (XP-X

) Y
320173

+

(X}-X5) (X5-X9) (X)X (X)-Xq)
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Arrays Input

Array (Dimension)

Description

X(3)

Y(3)

Three values of X

Three values of Y corresponding to X(3)

Variables Input

Variable Description
XP Value of X for which a value of Y will be determined
Arrays Calculated
Array (Dimension) Description

V(9)

Used for temporary storage of elements
in equation 1

Variables Calculated

Variable Description
P Value of Y corresponding to XP
SUBROUTINE BMOR

General Description

Deck name:
Entry name:

Called by:

Subroutines called:

BMOR

BMOR

None
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Subroutine BMOR computes the bending modulus of rupture and the torsion
modulus of rupture as functions of the u’“‘mate tensile strength of the

{ material and the ratio of the diameter of .he cylinder to the wall thickness.
Variables Input
Variable Description Units
DT Ratio of diameter of cylinder to
cylinder wall thickness
HT Ultimate temsile strength of material | 1b/in.’
Yarigbles Cajculated
Variable Description Units
AFR Scratch variable
AST Scratch variable
BFB Scratch variable
BRU Bending modulus of Tupture 1b/in,°
BST Scratch variable
CFB Scratch variable
CST . Scratch variable
TMOR Tension modulus of rupture 1b/ in.z
X Diameter-to-thickness ratio
z Ultimate tensile strength divided by 1b/in.% X
1,000 10-3
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SUBROUTINE LGEAR

General Description

Deck name: LGEAR
Entry name: LGEAR
Called by: LANDGR
Subroutines called: LOADS

Subroutine LGEAR computes the landing gear loads. The axial and normal
loads on the strut are determined for eight load conditions.

The loads for the two-point landing, spinup, springback, and unsymmetrical,
braking load conditions are determined at both the takeoff and landing weights
for both the main and nose gears.

The loads for the braked roll and drift landing conditions are determined
at both takeoff and landing weights for the main gear only.

The loads for the towing and tuming conditions are determined at the
takeoff weight only for both the main and nose gears.

Labeled Common Blocks

IP (60), which is taken from common block/IPRINT/, indicates whether the
landing gear loads will be printed in subroutine LGEAR (Figure 55).

Input data array D is transferred from program LANDGR to subroutine
LGEAR in common block/LGDATA/. Array D is described in Tables 31 and 32,

The landing gear loads computed in subroutine LGEAR are stored in array
FLOADS, which is placed in common block/LGDATA/. Array LFOADS is described
in Table 34.

The wheel, tire, tube, and brake weights computed in subroutine LGEAR
are placed in common block/LGDATA/. These variables are described in Table 35.
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Variables Calculated

Variable Description Units
Al Fore-aft angle of strut radians
A2 Lateral angle of strut radians
CSFA Cosine of angle between strut and fore-aft

direction
CSL Cosine of angle between strut and lateral
direction
Ccsv Cosine of angle between strut and vertical
DF Drag (fore-aft) load on wheels 1b
DIST Distance from main gear to nose gear in,
(fuselage stations)
FDSU Maximum spinup drag load 1b
FNGML Element in equation for TVFACT
ENS Element in turning load equation
FTOW Tow load 1b
FVSU Vertical load at time TSU 1b
I Loads index:
I =1 - Main gear at takeoff weight
I =17 - Main gear at landing weight
I = 33 - Nose gear at takeoff weight
I = 49 - Nose gear at landing weight
K Weight index:
K= 1 - Takeoff weight
K= 2 - Landing weight
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Variable Description Units
L Component index:
L=1 - Main gear
L =2 - Nose gear
N General index
NO2 General index
SF Side (lateral) load on wheels 1b
TSU Time required for wheel circumferential sec
velocity to reach ground velocity
TSUFAC Element in equation for TSU
TV Time required to develop vertical sec
reaction
TVFACT Element in equation for TV
VF Vertical load on wheels 1b
WITAUX Weight per wheel of nose gear wheel, tube, [ 1b
and tire
WITMAI Weight per wheel of main gear wheel, tube, | 1b
and tire
Arrays Calculated
Array
(location) Description Units
A(l) Distance from CG at takeoff to main gear in,
(fuselage stations)
A(2) Distance from CG at landing to main gear in,
(fuselage stations)
B(1) Distance from CG at takeoff to nose gear in,

(fuselage stations)
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Array

(location) Description Units
B(2) Distance from CG at landing to nose gear in.
(fuselage stations)
DELTIR(1) Deflection of main gear tires ft
DELTIR(2) Deflection of nose gear tires ft
FIN(1) Inertia of main gear wheels, tires, tubes, slug-ft2
and brakes
FIW(2) Inertia of nose gear wheels, tires, and slug-ft2
tubes
FNG(1) Load factor at takeoff weight
FNG(2) . Load factor at landing weight
FVMAX (1) Maximm vertical load at takeoff weight 1b
FVMAX (2) Maximm vertical load at landing weight 1b
GRWT (1) Takeoff gross weight 1b
GRWT (2) Landing gross weight 1b
oD(1) Outside diameter of main gear tires ft
0D(2) Outside diameter of nose gear tires ft
PRAD(1) Rolling radius of main gear tires ft
PRAD(2) Rolling radius of nose gear tires ft
STROKE(1) Effective stroke at takeoff weight ft
STROKE (2) Effective stroke at landing weight ft
VL(1) Landing speed at takeoff weight ft/sec
VL(2) Landing speed at landing weigit ft/sec

567




SUBROUTINE LGWT

General Description

Deck name: LGWT

Entry name: LGWT
Called by: LANDGR
Subroutines called: BMOR, LG3P

Subroutine LGWT computes *he weight of the main landing gear and the
weight of either the nose gear or the tail wheel.

The total landing gear weight is the sum of the weights of the inner
cylinder, outer cylinder, axle, bogie, drag strut, side strut, oil, wheels,
tires, tubes, brakes, and miscellaneous components. Weight summary results
are printed by this routine (Figures 56 and 57).

Labeled Common Blocks

Input array D is transferred from program LANDGR to subroutine LGWT in
common block/LGDATA/. Array D is described in Tables 31 and 32.

The landing gear loads which were stored in array FLOADS in subroutine
LGEAR are transferred to subroutine LGWT in common block/LGDATA/. Array
FLOADS is described in Table 34.

The wheel, tire, tube, and brake weights are transferred from subroutine
LGEAR to subroutine LGWT in common block/LGDATA/. These variables are des-
cribed in Table 35.

The weights and fuselage stations of the main gear and either the nose

gear or tail wheel are stored in array FDAT in labeled common block/FDATT/.
These variables are Aescribed in Table 33.
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Variables Calculated

Variable Description. Units
AM Constant in piston diameter equation
AREAC Area of cylinder section in.2
AREA2S brea of section 2 from previous pass in.2
in deflection loop
AXLGTH Length of axle 1b
AXLOAD Total load on axles 1b
BOM Constant in piston diameter equation
BD Diameter of bogie in,
BMAX Bending moment on axle in.-1b,
2B Bending moment on hogie in.-1b.
BMFACT Ratio of deflection at bottom of strut
to deflection at section 2
BMOD Bending modulus of rupture for axle lb/in.2
BMOFR Bending modulus of rupture at cylinder lb/in.2
section
BMR Resultant bending moment in.-1b,
BMY Fore-aft bending moment in,-1b,
BMYDZ Design fore-aft bending moment at in,-1b.
section 2
BMZ Lateral bending moment in,.-1b,
BMZDZ Design lateral bending moment at in.-1b,
section 2
BOGL Length of bogie in.
BOGWT Weight of bogie 1b,
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Variable Description Units
COSTHE Cosine of angle between strut and
vertical '
DEFLI Deflection indicator
DEFLP Angular deflection at bottom of strut radians
DEFLY Fore-aft deflection at bottom of in,
strut
DEFLZ Lateral deflection at bottom of strut in,
DELTA “aight coefficient
DELTYR Deflection of tires in.
DIAAX Diameter of axle in,
DIADZ Diameter of cylinder at section 2 in,
DIAM Diameter of cylinder in,
DLFLNG Length from section to ground for in,
drift landing condition
DOTINT Interpolated value of diameter-to-
thickness ratio
DOVT Final.value of diameter-to-thickness
ratio
DP Diameter of piston in,
DSF Weight coefficient for drag strut
DSTRWT Weight of drag strut 1b
ECCET Eccentricity in.
FIG Moment of inertia at section 2 i.n.4
GMOD Modulus of rigidity 1b/in.’
HT Ultimate tensile strength 1b/i.n.2
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Variable Description Units
I Section subscript
J Loads subscript
L Loads index
LOOP Deflection loop counter
M General index
N Index in diameter-to-thickness
ratio search
NTRIP Component indicator (1 = main gear,
2 = nose gear)
ODTYR Outside diameter of tires in.
PASS Ratio check counter
PI Ratio of circumference of circle to
diameter
RADPD Element in piston diameter equation
SMALA Element in piston diameter equation
SMALB Element in piston diameter equation
SSF Weight coefficient for side strut
SSTRWT Weight of side strut 1b
STROKE Stroke of piston in,
STRUTS Number of struts
SW Static load on each strut 1b
TAILWT Weight of tail wheel 1b
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Variable Description Units
TMAX Torsion moment on axle in,-1b,
™B Torsion moment on bogie in.-1b
™D Torsion modulus of rupture for axle lb/in.2
TMOFR Torsion modulus of rupture at cylinder 1b/i.n.2

section
TOTAL Total weight of main or nose gear 1b
TOTCAL Total calculated weight of landing 1b
gear structure
TOTLNG Axle to trunnion length of gear in,
with piston extended
TOTSTW -Total calculated weight 1b.
TPHI Torsion bending moment in.-1b
TPHIDZ Design torsion bending moment at in.-1b
section 2
VOLAX Volume of axle in.>
VOLOIL Volume of oil in,>
WBTT Weight of brakes, wheels, tires, 1b
and tubes
WHEELS Number of wheels per strut
WIDTH Width of tires in,
WTAXL Weight of axle 1b
WTBRK Weight of brakes 1b
WI'IC Weight of inner cylinder 1b
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Variable Description Units
WIMISC Calcuiated miscellaneous weight 1b
WIoC Weigh. of outer cylinder 1b
WIOIL Weight of oil 1b
WTTT Weight of tubes and tires 1b
WIWHL Weight of wheels 1b
XAWTEB Fore-aft distance from trunnion to CG in,
of wheels, tires, tubes, and
brakes

XCG Fore-aft distance from trumnion to CG in,
of main or nose gear

XCGDS Fore-aft distance from trunnion to CG in.
of drag strut

XCGIC Fore-aft distance from trunnion to CG in.
of inner cylinder

XCGOC Fore-aft distance from trunnion to CG in.
of outer cylinder

XCGOIL Fore-aft distance from trunnion to CG in.
of oil

XCGSS Fore-aft distance from trunnion to CG in.
of side strut

XFB Bending modulus of rupture for bogie 1b/ in.2

XFT Torsion modulus of rupture for bogie lb/in.2

YAWTBB Lateral distance from trunion to CG of in.
wheels, tires, tubes, and brakes

YCG Lateral distance from trunnion to CG in.
of main nose gear

YCGDS Lateral distance from trunnion to CG in,

of drag strut
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Variable Description Units

YCGIC Lateral distance from trunnion to CG in.
of inner cylinder

YCGOC Lateral distance from trunnion to CG in.
of outer cylinder

YCGOIL Lateral distance from trunnion to CG in.
of oil

YCGSS Lateral distance from trunnion to CG in,
of side strut

ZAWTBB Vertical distance from trunnion to CG in,
of wheels, tires, tubes, and brakes

Z2CG Vertical distance from trunnion to CG in,
of main or nose gear

ZCGDS Vertical distance from trunnion to CG in,
of drag strut

ZCGIC Vertical distance from trunnion to CG in,
of inner cylinder

ZCGOC Vertical distance from trunnion to CG in,
of outer cylinder

ZCGOIL Vertical distance from trivanion to CG in,
of oil

ZCGSS Vertical distance from t:runnion to CG in.

of side strut
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Arrays Calculated

section 2

Array
(location) Description Units
ANGLE(1) Fore-aft angle of strut radians
ANGLE (2) Lateral angle of strut radians
AREAN(1) Final area of section 1 in.2
AREAN(2) Final area of section 2 in.z
AREAN(3) Final area of section 3 in.z
AREAN(4) Final area of section 4 in.z
AS(1) Clyinder area required for strength :i.n.2
for DOT(1)
AS(2) Cylinder area required for strength in.z
for DOT(2)
AS(3) Cylinder area required for strength in.z
for DOT(3)
DIA(1) Outside diameter of strut for DOT(1) in.
DIA(2) Outside diameter of strut for DOT(2) in.
DIA(3) Outside diameter of strut for DOT(3) in.
DOT (1) First assumed value of diameter-to-
thickness ratio
DOT(2) Second assumed value of diameter-to-
thickness ratio
DOT(3) Third assumed value of diameter-to-
thickness ratio
DOVRIN(1) Final diameter-to-thickness ratio of
section 1
DOVRTIN(2) Final diameter-to-thickness ratio of
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Array
(location) Description Units

DOVRTN(3) Final diameter-to-thickness ratio of
section 3

DOVRIN(4) Final diameter-to-thickness ratio of

section 4
FLNGTH(1) Length from axle to section 1 in,
FLNGTH(2) Length from axle to section 2 in,
FLNGTH(3) Length from axle to section 3 in.
FLNGTH(4) Length from axle to section 4 in,
GRWTI'(1) Takeoff gross weight 1b.
GRWT (2) Landing gross weight 1b.

LODIDN(1) Design condition identification for
section 1

LODIDN(2) Design condition identification for
section 2

LODIDN(3) | Design condition identification for
section 3

LODIDN(4) Design condition identification for
section 4

PFB(1) Bending modulus of rupture at 1b/in.2
section 1

PFB(2) Bending modulus of rupture at 1b/in.2
section 2

PFB(3) Bending modulus of rupture at lb/:i.n.2
section 3

PFB(4) Bending modulus of rupture at lb/in.2
section 4
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Array

(location) Description Units
PFST(1) Torsion modulus of rupture at lb/in.2
section 1
PFST (2) Torsion modulus of rupture at 1b/.’m.2
section 2 '
PFST(3) Torsion modulus of rupture at lb/in.z
section 3
PFST(4) Torsion modulus of rupture at 1b/in.2
section 4
PHI(1) Angular deflection at section 1 radians
PHI(2) Angular deflection at section 2 radians
PHI(3) Angular deflection at section 3 radians
PHI(4) Angular deflection at section 4 radians
RAT (1) Ratio of strength area to
geometric area for DOT(1)
RAT (2) Ratio of strength area to
geometric area for DOT(2)
RAT(3) Ratio of strength area to
geometric area for DOT(3)
Y(1) Fore-aft deflection at section 1 in.
Y(2) Fore-aft deflection at section 2 in.
Y(3) Fore-aft deflection at section 3 in.
Y(4) Fore-aft deflection at section 4 in,
2(1) Lateral deflection at section 1 in,
2(2) Lateral deflection at section 2 in,
2(3) Lateral deflection at section 3 in,
Z(4) Lateral deflection at section 4 in,
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APPENDIX B
LANDING GEAR MODULE

FLOW CHARTS AND FORTRAN LISTS
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